SYNCTRON / Σ FET: Transistor de Coherencia

Propuesta morfológica cuántica para computación de coherencia TMRCU

Proyecto TMRCU / MSL

25 de octubre de 2025

Resumen

Se propone un dispositivo físico elemental —el **SYNCTRON** o Σ FET— que reemplaza al transistor binario de silicio en la *Computación por Coherencia* ($C\Sigma C$) postulada por la TMRCU. El SYNCTRON no opera por flujo de carga, sino por **locking coherencia** (\mathcal{L}) entre modos de fase ()*inducidoporelcampo* Σ . Su función es análoga a la sinapsis neuronal: detecta, integra y estabiliza coherencia, con memoria intrínseca (m). Se detallan arquitecturas lógicas elementales (puertas $C\Sigma A$, $C\Sigma S$, $C\Sigma N$) y un plan de verificación experimental mínimo.

1. Introducción: Limitaciones del bit y necesidad de coherencia

La computación actual (bit) es frágil ante ruido (ϕ) y decoherencia. La TMRCU postula que la información fundamental reside en la coherencia (Σ), no en estados binarios. Un *computador coherencial* usaría la dinámica $\Sigma - \chi$ para procesar información con robustez intrínseca. El Σ FET es el bloque constructor elemental.

2. El SYNCTRON / Σ FET

2.1. Principio físico

Un sistema cuántico (ej. spin, polarización fotónica, modo de cavidad) con dinámica oscilatoria intrínseca (ω_0), acoplado al campo Σ local y controlado por un gate (u_g). La ecuación de fase efectiva (Stuart-Landau + TMRCU):

$$\frac{\mathrm{d}}{\mathrm{d}t = \omega_0 + A_c \sin(c - -\beta\phi + Q + g\Sigma\cos(\Sigma - +\xi(t)))}$$

donde A_c es la amplitud de control/inyección, $\beta \phi$ la fricción, Q el empuje cuántico y $g\Sigma$ el acoplo al campo de coherencia. El **locking** (\rightarrow 0) ocurre si $|A_c + g\Sigma| \ge |\omega_0 - \omega_c|$. El Σ FET usa u_g para modular A_c y/o ω_0 .

2.2. Modos de operación

- **Detector** Σ : $A_c = 0$. Mide t) para inferir $\Sigma(t)$.
- Actuador Σ : $A_c \neq 0$. Fija mediantelockingac; inyecta coherencia.
- Memoria (m): usa histéresis en la curva u_q) para almacenar estado.

3. Arquitecturas lógicas elementales $(C\Sigma C)$

Se definen puertas lógicas coherenciales usando redes de Σ FETs acoplados.

3.1. $C\Sigma A$ (AND coherencial)

Dos entradas Σ_1, Σ_2 controlan un Σ FET de salida. Locking ($\Sigma_{\text{out}} \approx 1$) solo si Σ_1 y Σ_2 superan umbral θ . Realiza $\Sigma_{\text{out}} \approx \Sigma_1 \cdot \Sigma_2$ (producto lógico).

3.2. $C\Sigma S$ (SUM coherencial)

Salida Σ_{out} es proporcional a la suma coherente de entradas: $\Sigma_{\text{out}} \propto \mathbb{E}[\cos(1-2)]$. Realiza $\Sigma_{\text{out}} \approx \max(\Sigma_1, \Sigma_2)$ o avg (Σ_1, Σ_2) según configuración.

3.3. $C\Sigma N$ (NOT coherencial)

Invierte fase o inhibe locking: $\Sigma_{\rm out} \approx 1 - \Sigma_{\rm in}$.

3.4. $C\Sigma D$ (Delay coherencial)

Propaga Σ con retardo τ controlado.

3.5. Latch coherencial

Circuito biestable (Σ FET con retroalimentación) que almacena un estado Σ (0 o 1) hasta recibir un pulso de reset.

4. Plan de verificación experimental

4.1. Experimentos mínimos viables

- 1. SYNCTRON solo: curva $\Sigma(u_q)$ y umbral de Hopf; histéresis controlada.
- 2. $\mathbb{C}\Sigma A$: medir $\Sigma_{\text{out}}(\Sigma_1, \Sigma_2)$ y ajuste $\Sigma_1 \Sigma_2$ (RMSE < 0.1).
- 3. $\mathbb{C}\Sigma S$: $\Sigma_{\text{out}} \approx \text{máx}(\Sigma_1, \Sigma_2)$ con error $< \theta.1$.
- 4. Latch: retención > 1 s (fotónica con ganancia) o > 1 ms (spintrónica) sin refresh.

4.2. Criterios de refutación

Fracaso sostenido en alcanzar los ajustes anteriores con potencia estadística ≥ 0.9 y $\alpha = 0.01$; incapacidad de escalar más allá de malla 10×10 con errores de fase > 10 %.

5. Ruta de integración

P0 Dispositivo único (Σ FET) y lectura Σ .

- **P1** Biblioteca de celdas ($C\Sigma A$, $C\Sigma S$, $C\Sigma D$, $C\Sigma N$, Latch) en die fotónico o spintrónico.
- **P2** Matriz 32×32 programable (FPGA coherencial).

P3 Integración con control clásico y algoritmo CSL-H para aplicaciones bio/IA.